

DPX-N

PROGRESSIVE DISTRIBUTORS

High quality and **High tolerance**An unbeatable combination of performance and convenience

TABLE OF CONTENTS

Features and general description	3	Sensor Group II Category 3G-3D	14
DPX-N metering device advantages	4	Order Codes	14
Technical data sheet	4	Electrical connections	14
Operation	5	Shut-Off EV-2	15
Operation (continued)	6	Technical features	15
Outlets	7	Pressure sensors with memory	16
Overall dimensions	7	External Bridges	16
Head and Tail Segment	8	Order codes	16
Tie Rods Ordering Codes	8	Order codes	16
Assembled Blocks Order	9	PUSH-IN fittings	17
Base Structure Order Codes	9	PUSH-IN fittings with valves	17
Metering Device	10	Ring Fittings	18
Metering Device with Indicator	10	Fittings DIN 2353	18
Metering Device with Inductive Sensor M8X1	10	Check valve	18
Metering Device with Inductive Sensor M12x1	10	Ring Fittings AISI	19
Ordering Codes of Bridge Elements	11	Fittings DIN 2353 AISI	19
RH-LH Bridge	11	Check valve	19
Bridge RH	11	Air / Oil Progressive Distributors	20
Bridge LH	11	Applications	20
Oil	12	Air-oil Progressive Distributor Overall Dimensions	21
Grease	12	Air Consumption	21
Sensor kit codes (PNP NA)	13	Configuration and functions	22
Connection cable codes	13	Single Mixing Base Codes	22
Electrical data	13	Complete Group Order Codes	22
Electrical connections	13	Check Valve with Nipple	23
Sensor Group II Category 1D-1G/2G	14	Flow reducers	23
Order codes	14		

Features and general description

The DPX-N system distributes lubrication with a progressive movement of pistons, driving one another in an inter-dependent succession obtained by means of a single feed flow.

This system is highly qualified for dosing oil and grease for one or several support units. Each piston is in series with those preceding or with those following and the failure of one of them stops the sequence and therefore blocks the system.

This block also occurs when there is an external obstruction or an outlet that is not going to be used is closed.

The application of just one element with visual

or electric control is enough for an effective and complete control of the entire distribution system.

The pump flow rate is fractionable, by placing metering blocks in cascade. A block called master can feed one or more progressive distributors. The latter, in turn, can feed other distributors.

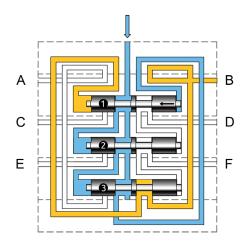
It is theoretically possible to continue but, for reasons related to compressibility and aeration of the lubricants, it is advisable not to exceed two cascades after the master. Malfunctions can occur if exceeded, especially when using low penetration index grease and minimum flow rates.

DPX-N metering device advantages

Absolute guarantee of delivering the pre-established amount of lubricant.

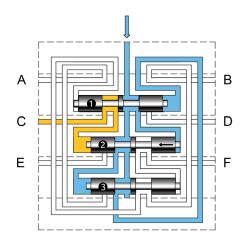
Suited for use in systems requiring operating control.

Absolute certainty of long life by means of a careful choice of materials and full control of processing.

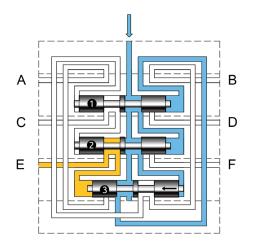

Possibility of checking operation by using visual and electric control devices.

Designer has a large selection of available distributors and flow rates.

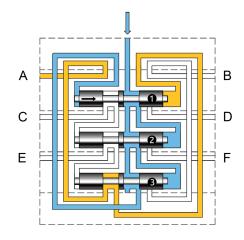
Technical data sheet

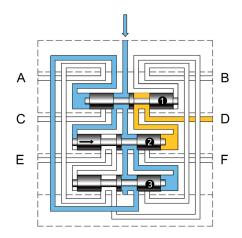

Flow rate/stroke for single outlet (±10%)	25 mm ³ - 45 mm ³ - 75 mm ³ - 105 mm ³ - 140 mm ³
Number of metering elements	From 3 to 12
Operating pressure	from 15 to 300 bar
Operating temperature	from -20° C to 100° C
Distributor material	Galvanised steel Zi-Ni (free from Cr-V) / AISI 316L
Number of cycles	Max 250/min
Inlet seat	1/8" BSP (M10x1 Special Execution)
Outlet seat	M10 x 1
Fixing screws	M5 x 30
Permitted lubricants (at the min. operating temp.)	Mineral oil 46 cSt Max grease NLGI 2
Control devices	Visual and electric indicating cycle and overpressure
Main lines	Pipes Ø 8-6
Secondary lines	Pipes Ø 6-4
Elements tightening torque	9 Nm
O-rings	NBR or FPKM (on request)

Operation

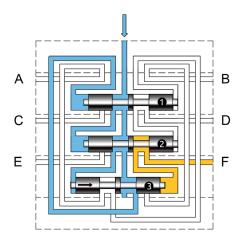


The pressurised lubricant flow (blue) moves piston 1 to the left enabling dispensing (yellow) from outlet B.


When piston 1 has completed its stroke, the pressurised lubricant flow (blue) acts on piston 2. The volume of lubricant (yellow) is dispensed from outlet C.

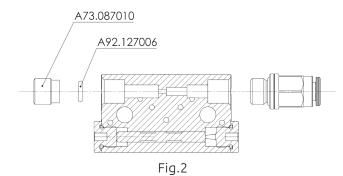

When piston 2 has completed its stroke, the pressurised lubricant flow (blue) acts on piston 3. The volume of lubricant (yellow) is dispensed from outlet E.

Operation (continued)



When piston 3 has completed its stroke, the pressurised lubricant flow (blue) acts on piston 1. The volume of lubricant (yellow) is dispensed from outlet A.

When piston 1 has completed its stroke, the pressurised lubricant flow (blue) acts on piston 2. The volume of lubricant (yellow) is dispensed from outlet D.



When piston 2 has completed its stroke, the pressurised lubricant flow (blue) acts on piston 3. The volume of lubricant (yellow) is dispensed from outlet F. The progressive distributor is ready for a new cycle.

Outlets

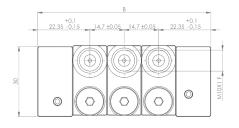
UNI5925-M4x6 Fig.1

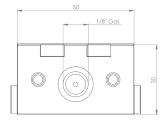
Separation and joining of outlets

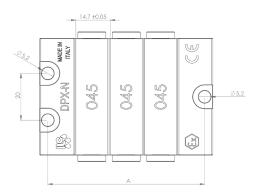
Each distributor piston is set up to feed 1 or 2 outlets.

When the separator grub screw is inserted (Fig.1) lubricant is dispensed in both outlets. When the grub screw is not inserted (Fig.2) lubricant is only dispensed from one outlet with a double flow rate.

When it is necessary to close an outlet thought to be used, remove the grub screw (UNI5925-M4X6) making sure to insert the closing plug (A73.087010 + A92.127006) in the outlet no longer used.

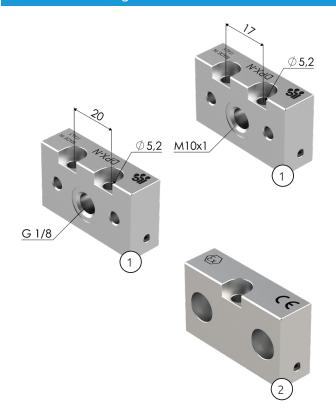

The same procedure is valid when, on the contrary, the amount of outlets must be increased. You must remove the closing plug and insert the separator grub screw.


Distributors are normally supplied with the separator grub screw inserted and two side outlets open.


Important

It is not possible to close both outlets relative to a single piston. All of the operations indicated above must be performed in a perfectly clean environment.

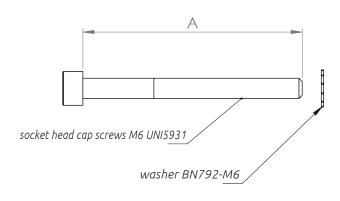
Overall dimensions



Outlets	A [mm]	B [mm]
6	67.1	74.1
8	81.8	88.8
10	96.5	103.5
12	111.2	118.2
14	125.9	132.9
16	140.6	147.6
18	155.3	162.3
20	170	177
22	184.7	191.7
24	199.4	206.4

Tolerance ±0.05 mm for a single element. It is advisable to make the third fixing hole for mounting.

Head and Tail Segment


		Head Segment (1)
Inlet seat	Zn-Ni Steel	AISI 316L
1/8" BSP	6.DPX.A	6X.DPX.A
M10x1	6.DPX.A.M10	-

	Tail Segment (2)
Zn-Ni Steel	AISI 316L
6.DPX.C	6X.DPX.C

In the Zi-Ni Steel version, the Head Segments are available both with inlet 1/8 BSP (distance between fixing holes 20 mm) and with inlet M10x1 (distance between fixing holes 17 mm).

In the AISI version it is only available with 1/8" BSP inlet (distance between fixing holes 20 mm).

Tie Rods Ordering Codes

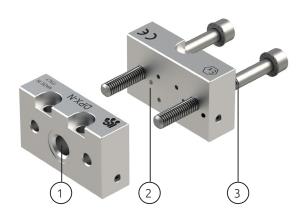
The code consists of two screws and two washers.

Elements	A[mm]	Zn-Ni Steel	AISI 316 L
3	65	6.TR.03	6X.TR.03
4	80	6.TR.04	6X.TR.04
5	95	6.TR.05	6X.TR.05
6	110	6.TR.06	6X.TR.06
7	120	6.TR.07	6X.TR.07
8	140	6.TR.08	6X.TR.08
9	150	6.TR.09	6X.TR.09
10	170	6.TR.10	6X.TR.10
11	180	6.TR.11	6X.TR.11
12	200	6.TR.12	6X.TR.12

Assembled Blocks Order

Base Structure	Number of block elements	
6.1N.06	6	
Metering Devices Elements	Flow rate (mm³)	Accessories
6.025.D.1N	25 mm³	
6.045.D.1N	45 mm³	
6.075.D.1N	75 mm³	
6.105.D.1N	105 mm³	
6.140.D.1.LR	140 mm³	Bridge
6.140.D.3I.8	140 mm³	RH Sensor

Example of an order sheet for a block of 6 metering device elements


The assembled blocks consist of the **Basic Structure** and the **Metering Device Elements**.

Choose a Base Structure and then proceed by indicating for each Metering Device Element, the **Code**, **Flow Rate** and **any control accessories**, as shown in the example at the side. For accessories, specify the position (RH/LH)

As indicated in the table, you must start in sequence from the first element. Specify only one element per line: the sequence of elements in the list corresponds to the assembly sequence.

The following pages show all the codes for the Structures and the individual Metering Device Elements. The Order sheet can be downloaded from https:\\.

Base Structure Order Codes

The **Base Structure** consists of the head segment (1), the tail segment (2) and the tie rods (3).

Number Metering Devices Elements	Zn-Ni Steel 1/8 BSP	Zn-Ni Steel M10x1	AISI 316 L 1/8 BSP
3	6.1N.03	6.1N.03.M10	6X.1N.03
4	6.1N.04	6.1N.04.M10	6X.1N.04
5	6.1N.05	6.1N.05.M10	6X.1N.05
6	6.1N.06	6.1N.06.M10	6X.1N.06
7	6.1N.07	6.1N.07.M10	6X.1N.07
8	6.1N.08	6.1N.08.M10	6X.1N.08
9	6.1N.09	6.1N.09.M10	6X.1N.09
10	6.1N.10	6.1N.10.M10	6X.1N.10
11	6.1N.11	6.1N.11.M10	6X.1N.11
12	6.1N.12	6.1N.12.M10	6X.1N.12

Metering Device

Flow rate	Zn-Ni Steel	AISI 316L
25 mm³	6.025.D.1N	-
45 mm³	6.045.D.1N	6X.045.D.1N
75 mm³	6.075.D.1N	6X.075.D.1N
105 mm³	6.105.D.1N	6X.105.D.1N
140 mm³	6.140.D.1N	6X.140.D.1N

If an element with a single outlet is required, replace the letter D with the letter S e.g. 6.045.S.1N

Metering Device with Indicator

Flow rate	Zn-Ni Steel	AISI 316L
45 mm³	6.045.D.2V	6X.045.D.2V
75 mm³	6.075.D.2V	6X.075.D.2V
105 mm³	6.105.D.2V	6X.105.D.2V
140 mm³	6.140.D.2V	6X.140.D.2V

The element that mounts the indicator is subjected to a leak at a fixed flow rate of 7 mm³. If an element with a single outlet is required, replace the letter D with the letter S e.g. 6.045.S.2V

Metering Device with Inductive Sensor M8X1

Flow rate	Zn-Ni Steel	AISI 316L
45 mm³	6.045.D.3I.8	6X.045.D.3I.8
75 mm³	6.075.D.3I.8	6X.075.D.3I.8
105 mm³	6.105.D.3I.8	6X.105.D.3I.8
140 mm³	6.140.D.3I.8	6X.140.D.3I.8

If an element with a single outlet is required, replace the letter D with the letter S e.g. 6.045.S.31.8

Metering Device with Inductive Sensor M12x1

Flow rate	Zn-Ni Steel	AISI 316L
45 mm³	6.045.D.3I.12	6X.045.D.3I.12
75 mm³	6.075.D.3I.12	6X.075.D.3I.12
105 mm³	6.105.D.3I.12	6X.105.D.3I.12
140 mm³	6.140.D.3I.12	6X.140.D.3I.12

If an element with a single outlet is required, replace the letter D with the letter S e.g. 6.045.S.31.12

Ordering Codes of Bridge Elements

The Bridge element transfers the flow rate of one or both outlets to the next element. It can be ordered with the bridge outlet enabled to the right, left or both.

The arrows indicate the outlets connected to the next element. Assembly and/or removal take place as with a normal metering device.

RH-LH Bridge

Bridge	LR
--------	----

Flow rate	Zn-Ni Steel	AISI 316L
25 mm³	6.025.D.1LR	-
45 mm³	6.045.D.1LR	6X.045.D.1LR
75 mm³	6.075.D.1LR	6X.075.D.1LR
105 mm³	6.105.D.1LR	6X.105.D.1LR
140 mm³	6.140.D.1LR	6X.140.D.1LR

Bridge RH

Bridge R

Flow rate	Zn-Ni Steel	AISI 316L
25 mm³	6.025.D.1R	-
45 mm³	6.045.D.1R	6X.045.D.1R
75 mm³	6.075.D.1R	6X.075.D.1R
105 mm³	6.105.D.1R	6X.105.D.1R
140 mm³	6.140.D.1R	6X.140.D.1R

Bridge LH

Bridge L

Flow rate	Zn-Ni Steel	AISI 316L
25 mm³	6.025.D.1L	-
45 mm³	6.045.D.1L	6X.045.D.1L
75 mm³	6.075.D.1L	6X.075.D.1L
105 mm³	6.105.D.1L	6X.105.D.1L
140 mm³	6.140.D.1L	6X.140.D.1L

Fitting BANJO + Grease Nipple

The Banjo fittings are installed at the inlet or outlet of the progressive distributor so as to use a manual or pneumatic pump in case the main pump does not work.

Code	Thread
03.355.5	1/8" BSP
03.355.6	M10 x 1

Inlet Filter

These filters are installed to prevent impurities from entering the lubricant lines.

Connections 1/4" BSP (Female)

Oil		Grease	
Code	Micron	Code	Micron
07.260.0	25	07.261.0	150
07.260.1	40	07.261.1	300
07.260.2	60		
07.260.3	125		

Inlet Filter 70 µ

These filters are installed to prevent impurities from entering the lubricant lines.

Filtering degree 70 μ Connections R 1/8" (M) - 1/4" (F) BSP

Code	
07.270.5	

Control with visual indicator

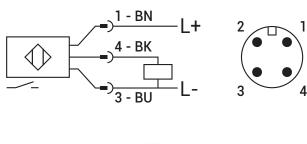
The visual control indicators allow you to visually verify the movement of the pistons and the consequent correct operation of the entire system

Control with inductive sensor

This control consists of an inductive sensor enclosed in a block.

The piston moves in its operating seat and opens and closes the contact of the sensor. They can be used, in addition to intermittent services, in circulation systems. They can count up to 250 movements per minute.

Electrical data	
Voltage	10 - 30 V DC
Output current	Max 200 mA
Current	< 10 mA
Temperature	From 25 °C to +70 °C
Protection	IP 67
Sensor body	Nickel Plated Brass
Sensor Block	Pet-G
Connection	M8x1 - M12x1


Sensor kit codes (PNP NA)

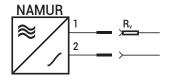
With 2 m cable	49.054.2
M8 x 1	49.053.7
M12 x 1	49.053.9

Connection cable codes

Length	M8x1 Straight	M12x1 90°	M12x1 Straight
5 m	A91.111227	A91.111441	A91.111349
10 m	A91.111348	A91.111552	A91.111296
15 m	A91.111393	A91.111553	A91.111350

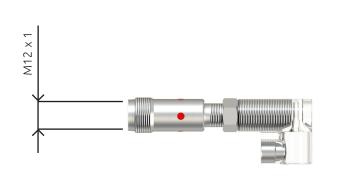
Electrical connections

Sensor Group II Category 1D-1G/2G


Electrical data

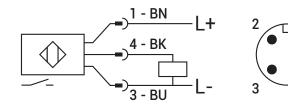
Min. current absorption, not attenuated	2.1 mA
Internal capacity Ci max.	210 nF
Max absorbed current, attenuated	1 mA
Switching frequency	700 Hz
Internal inductance Li max.	0.115 nH
Nominal pre-resistance Rv	1000 Ohm
Max tv availability delay	30 ms
Nominal insulation voltage Ui	75 V DC
Operating voltage UB	7.79 VDC
Nominal operating voltage Ue DC	8.2 V

Order codes


Inductive control	49.053.9.ATX.1GD
2 m cable connector	A91.111519
10 m cable connector	A91.111520

Electrical connections

Sensor Group II Category 3G-3D


Electrical data

Voltage	10 - 30 V DC
Output current	Max 200 mA
Current	< 10 mA
Temperature	From 25 °C to +70 °C
Protection	IP 67
Sensor body	Nickel Plated Brass
Sensor Block	Pet-G
Connection	M12x1

Order Codes

Inductive control	49.053.9.ATX	
Cable	M12x1 90°	M12x1 Straight
5 m	A91.111441	A91.111349
10 m	A91.111552	A91.111296
15 m	A91.111553	A91.111350

Electrical connections

DPX-N

Shut-Off EV-2

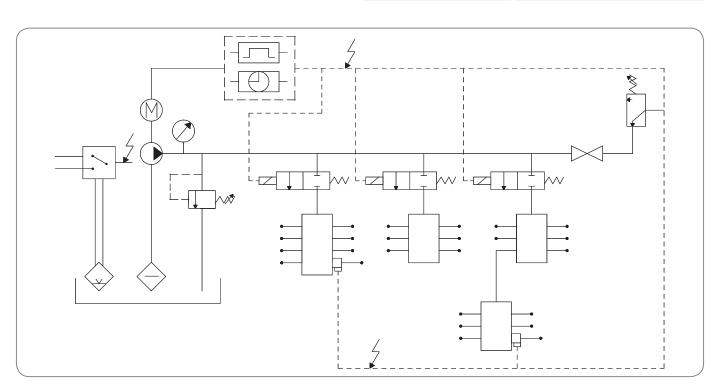
Code

A70.093828

A70.093828.115

A70.093828.230

Shut-Off EV-2 A70.093606/.115/.230



The SHUT-OFF EV-2 valves can be mounted on Head Segments with 1/8" BSP thread.

They consist of a 2-way "NC" solenoid valve and a base that is applied directly to the inlet of the progressive distributors.

The EV-2 valve is the indispensable element to transform a standard progressive system into a selectable system.

	rechnical features	
	Pressure	Max 200 Bar
	Lubricant	Oil viscosity min 32 cSt) Grease max NLGI 1
	Temperature	From -20 °C to +80 °C
Voltage	Voltage	24 V DC, 115 - 230 V AC 50/60 Hz.
24 V DC	Power	35 W (DC) 8 VA (AC)
115 V AC	Protection rating	IP54
230 V AC	Inlet thread	1/8" BSP

Pressure sensors with memory

09.710.2...7

These indicators are normally used to check for overpressure on main and secondary lines.

If a pressure beyond that intended occurs, the indicator comes out from its seat and remains out until you manually intervene on the release lever.

We recommend intervening on the release lever after having discovered what happened.

Order codes			
Code	Pressure	Code	Pressure
09.710.2	50 Bar	09.710.5	150 Bar
09.710.3	75 Bar	09.710.6	200 Bar
09.710.4	100 Bar	09.710.7	250 Bar

To connect the pressure sensor you need an **articulated T-fitting M10x1 M/F (09.600.5**).

External Bridges

These connection junctions are used when you want to convey the lubricant supplied by multiple outlets to a single outlet.

Order codes	
Bridge without outlet	09.600.3
Bridge with outlet	09.600.4

PUSH-IN fittings

		Straight
Code	Thread	Ø Pipe
03.256.0.CIL	G 1/8"	
03.256.0	R 1/8"	(mm
03.256.3.CIL	M10x1	6 mm
03.256.3	M10x1K	
03.255.3.CIL	M10x1	4
03.255.3	M10x1 K	4 mm

		90°
Code	Thread	Ø Pipe
03.256.6.CIL	G 1/8"	
03.256.6	R 1/8"	(mm
03.256.7.CIL	M10x1	6 mm
03.256.7	M10x1K	
03.255.8.CIL	M10x1	4
03.255.8	M10x1 K	4 mm

PUSH-IN fittings with valves

Straight

		Straight
Inlet	Thread	Ø Pipe
14.256.0.1	G 1/8"	6 mm
14.256.3.l	M10x1	6 111111
Output	Thread	Ø Pipe
14.255.3.0	NA4 0 4	4 mm
14.256.3.O	M10x1	6 mm

		_
\cap	$^{\circ}$	C
ソ	U	

		90°
Inlet	Thread	Ø Pipe
14.256.6.1	G 1/8"	6 mm
14.256.7.1	M10x1	6 111111
Output	Thread	Ø Pipe
14.255.8.0	M4.0v.1	4 mm
14.256.7.O	M10x1	6 mm

PUSH-IN fittings / PUSH-IN valves

Maximum Pressure: 250 Bar. Piping allowed: nylon, nylon 6, pa12, pa12sr.

Ring Fittings

Code	Thread	Ø Pipe
04.051.0 + 06.051.0	M10x1	4 mm
04.052.0 + 06.052.0		6 mm

Ring Fittings

Maximum Pressure: 250 Bar.
Piping allowed: rilsan, nylon, nylon 6, pa12, pa12sr.
They can be mounted directly on the outlets.

Fittings DIN 2353

Straight

		Straight
R 1/8"	M10x1 K	Ø Pipe
-	ZZZ104-003	4 mm
ZZZ106-004	ZZZ106-003	6 mm
ZZZ108-004	ZZZ108-003	8 mm
G 1/8"	M10x1	Ø Pipe
ZZZ110-004-L	ZZZ110-003-L	10 mm

90°

		90°
R 1/8"	M10x1 K	Ø Pipe
	ZZZ104-103	4 mm
ZZZ106-104	ZZZ106-103	6 mm
ZZZ108-104	ZZZ108-103	8 mm

Fittings DIN 2353

Maximum Pressure: 315 Bar. Piping allowed: nylon, nylon 6, pa12, pa12sr and metal piping.

Check valve

Inlet	Thread	Output	Thread
14.050.3	R 1/8" - 1/8" M/F	14.050.8	M10x1k - M10x1 M/F
14.050.4	R 1/8" - M10x1 M/F	14.051.3	M10x1k - 1/8" M/F
14.050.5	R 1/8" - 1/4" M/F		
14.051.2	M10x1k - 1/8" M/F		
14.050.6	M10x1k - M10x1 M/F		
14.050.7	M10x1k - 1/4" M/F		

Check Valve

All check valves only accept fittings with conical threads. Models 14.050.4 / 14.050.6 / 14.050.8 can directly house the ring fittings shown on this page.

Ring Fittings AISI

Code	Thread	Ø Pipe
04.051.0.AISI	M10x1	4 mm
06.051.0		4 111111
04.052.0.AISI		6 mm
06.052.0		6 mm

Ring Fittings

Maximum Pressure: 250 Bar.
Piping allowed: rilsan, nylon, nylon 6, pa12, pa12sr.
They can be mounted directly on the outlets.

Fittings DIN 2353 AISI

Straight

90°

		Straight
M10x1 K	R 1/8"	Ø Pipe
ZZZ1012-003	-	4 mm
ZZZ106-003-VA	ZZZ106-004-VA	6 mm
-	ZZZ108-004-VA-L	8 mm

		90°
M10x1 K	R 1/8"	Ø Pipe
ZZZ1010-003	-	4 mm
ZZZ106-103-VA	ZZZ106-104-VA	6 mm
-	ZZZ108-104-VA	8 mm

Fittings DIN 2353

Maximum Pressure: 315 Bar.
Piping allowed: nylon, nylon 6, pa12, pa12sr and metal piping.

Check valve

Inlet	Thread	Output	Thread
14.050.4.AISI	R 1/8" - M10x1 M/F	14.050.8.AISI	M10x1k - M10x1 M/F
14.050.5.AISI	R 1/8" - 1/4" M/F		
14.050.6.AISI	M10x1k - M10x1 M/F		

Check Valve

All check valves only accept fittings with conical threads.

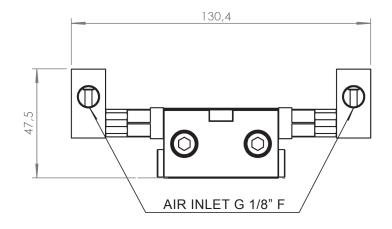
Models 14.050.4 AISI / 14.050.6 AISI / 14.050.8 AISI can directly house the ring fittings shown on this page.

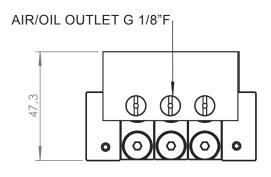
Air / Oil Progressive Distributors

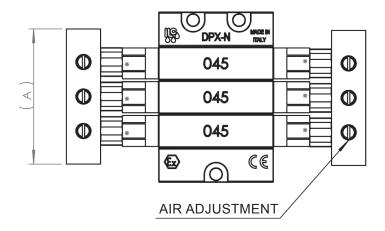
The DPX-N AIR model has been designed to send an air/oil flow to the points to be lubricated.

Lubricant economy

The oil introduced into the pipe together with the air can be dosed accordingly. Waste and lubricant contamination are eliminated.


Lubricant viscosity


The DPX-N AIR metering devices use lubricant oil with viscosity ranging between 15 and 1000 cSt. The optimal conditions are obtained with oils having viscosity between 32 and 320 cSt at a temperature of 40°C.


Applications

- Lubrication of elements rotating at high speed, where a constant supply of a minimum amount of lubricant is required to maintain a film of lubricant between the elements that the high centrifugal force tends to remove.
- Lubrication of parts that run at high temperatures where the lubricant can be dry or burnt
- Chain and gear lubrication
- Lubrication of guides slides and recirculation screws that run at high speed, which require a constant film of lubricant over the entire surface.
- Lubrication of bearings and supports that require protection from dust, water and other pollutants. The air flow creates slight overpressure inside the lubricated element, preventing pollutants from entering.
- Lubrication of points that are difficult to reach, where only a well directed air/oil spray can solve the problem.
- In applications in medium and large industrial machinery, and/or where differentiated lubrication is required between the various axes, it is important to use the EV-2 valve as the indispensable element to transform a standard air-oil progressive system into a selectable system.

Air-oil Progressive Distributor Overall Dimensions

А	Outlets
29.4 mm	1
44.1 mm	2
58.8 mm	3
73.5 mm	4
88.2 mm	5
102.9 mm	6
117.6 mm	7
132.3 mm	8

Air Consumption

The air consumption in Normal litres/hour (NI/h) is a function of the applied pressure, the number of utilities, and the diameter of the connection pipe to the point (pay attention in the case of spraying, as the diameter of the nozzle must be considered). The maximum operating pressure in the lubricant line must not exceed 100 bar

Inlet Air	+1/4 rotation	+1/2 rotation	+1 rotation	+2 rotations	+3 rotations
3 Ваг	1.0 l/m	3.5 l/m	10.0 l/m	22.0 l/m	33.0 l/m
4 Bar	1.2 l/m	4.2 l/m	12.0 l/m	26.0 l/m	40.0 l/m
5 Bar	1.6 l/m	5.5 l/m	15.0 l/m	33.0 l/m	50.0 l/m
6 Ваг	2.0 l/m	7.0 l/m	21.0 l/m	45.0 l/m	58.0 l/m

Configuration and functions

The DPX-N AIR metering device consists of a DPX-N progressive metering device and the **Mixing Side Bases**. The bases are installed directly on the outlets. If all points require air-oil lubrication, the number of metering device outlets and mixing bases is the same.

Air/oil can even be applied to just one side of the outlets or part of the points, whereas the rest are oil lubricated.

The sub-bases consist of the mixing block, the flow adjustment screws for each point and fittings with retainer for assembly to the metering device

Single Mixing Base Codes

Code	Outlets
02.910.1	1
02.910.2	2
02.910.3	3
02.910.4	4
02.910.5	5
02.910.6	6
02.910.7	7
02.910.8	8

Complete Group Order Codes

		_	
ı	Base Structure	Se Structure Number of block elements 6.1N.06 6	
	6.1N.06		
	Metering Devices Elements	Flow rate (mm³)	Accessories
	6.025.D.1N	25 mm³	
	6.045.D.1N	45 mm³	
	6.075.D.1N	75 mm³	
	6.105.D.1N	105 mm³	
	6.140.D.1.LR	140 mm³	Bridge
	6.140.D.3I.8	140 mm³	RH Sensor

Example of an order sheet for a block of 6 metering device elements

Given the high number of possible combinations, an order code for the complete group has not been provided. Once the configuration is established, a personalised code number will be assigned. The data required to make up the metering device are

- Configuration of the metering device DPX-N (see page 9)
- The code of the RH and LH mixers
- The accessories of the group

The Order sheet for the DPX-N Air groups can be downloaded from https:\\. Below are the order codes for the group's accessories.

Check Valve with Nipple

In medium to large sized systems (where there are flexible pipes of significant length), or where extreme precision is required in the dosing and detection of single cycles, we recommend installing an air check valve at the inlet of every mixing base.

The check valve prevents possible oil leaks in the pneumatic circuit in case of back pressure.

Valve	Nipple
14.350.1	03.000.5

Flow reducers

A flow reducer can be installed in the outlets of the metering device to prevent the inertia of the hoses or the flow rate of the pump from making the distributor perform more cycles than desired.

The nominal flow rate of the selected element does not change but the supply is slowed down.

The reducers, available in 2 sizes, can have different flow passages, even in the same distributor

Code	Reducer
02.303.3	735 x 10 ⁻³ mm2
02.303.4	972 x 10 ⁻³ mm2